comparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order
Authors
abstract
the work addressed in this paper is a comparative study between convergence of the acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on homotopy analysis method and adomian decomposition method for solving differential equations of integer and fractional orders.
similar resources
Comparison of acceleration techniques of analytical methods for solving differential equations of integer and fractional order
The work addressed in this paper is a comparative study between convergence of the acceleration techniques, diagonal pad'{e} approximants and shanks transforms, on Homotopy analysis method and Adomian decomposition method for solving differential equations of integer and fractional orders.
full textcomparison of the amount of debris extruded apically in two rotary techniques: flexmaster and m2
چکیده ندارد.
15 صفحه اولHYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
full texton the comparison of keyword and semantic-context methods of learning new vocabulary meaning
the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...
15 صفحه اولFractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations
The construction of fractional type of flatlet biorthogonal multiwavelet system is investigated in this paper. We apply this system as basis functions to solve the fractional differential and integro-differential equations. Biorthogonality and high vanishing moments of this system are two major properties which lead to the good approximation for the solutions of the given problems. Some test pr...
full textMy Resources
Save resource for easier access later
Journal title:
sahand communications in mathematical analysisPublisher: university of maragheh
ISSN 2322-5807
volume 2
issue 1 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023